Hindi Numeral Recognition using Neural Network

نویسنده

  • Mahendra Chaudhary
چکیده

Handwriting has continued to persist as a means of communication and recording information in day-to-day life even with the introduction of new technologies. The constant development of computer tools lead to the requirement of easier interface between the man and the computer. Handwritten character recognition may for instance be applied to Zip-Code recognition, automatic printed form acquisition, or cheques reading. The importance to these applications has led to intense research for several years in the field of off-line handwritten character recognition. ‘Hindi’ the national language of India (written in Devanagri script) is world’s third most popular language after Chinese and English. Hindi handwritten character recognition has got lot of application in different fields like postal address reading, cheques reading electronically. Recognition of handwritten Hindi characters by computer machine is complicated task as compared to typed characters, which can be easily recognized by the computer. This paper presents a scheme to recognize hindi number numeral with the help of neural network. Keywords— Hindi Numerals, Neural Network, Training, Testing, Images. ——————————  ——————————

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition Offline Handwritten Hindi Digits Using Multilayer Perceptron Neural Networks

Handwritten Hindi digit recognition plays an important role in eastern Arab countries especially in the courtesy amounts of Arab bank checks. In this paper, we proposed an efficient offline handwritten Hindi digits recognition system and developed using Multilayer Perceptron Neural Network (MLP). The implemented system recognizes separated handwritten Hindi digits scanned using a scanner. The s...

متن کامل

Implementation of Feed-forward Neural Network Models for Pattern Classification Using Transformation Based Feature Extraction Methods

Automatic recognition of handwritten Hindi characters is a difficult and one of the most interesting research areas of pattern recognition field. A lot of work has been done in this area till date; still it is a subject of active research. Hindi characters are cursive in nature and thus characters may be written in various cursive ways. Characters also show a lot of similar features such as hea...

متن کامل

Recognition of Handwritten Hindi Characters using Backpropagation Neural Network

Automatic recognition of handwritten characters is a difficult task because characters are written in various curved & cursive ways, so they could be of different sizes, orientation, thickness, format and dimension. An offline handwritten Hindi character recognition system using neural network is presented in this paper. Neural networks are good at recognizing handwritten characters as these ne...

متن کامل

A Survey on Handwritten Character Recognition Using Artificial Neural Network

To automatically recognize the handwritten Hindi character is a very tricky task. Because these characters are written in unlike sizes, dimension, orientation, thickness and format. The Hindi Language is one of the complex language which having compound characters. Compound characters are the combination of one or more characters to make complex characters. Thus the structure of these is comple...

متن کامل

Gujarati handwritten numeral optical character reorganization through neural network

This paper deals with an optical character recognition (OCR) system for handwritten Gujarati numbers. One may find so much of work for Indian languages like Hindi, Kannada, Tamil, Bangala, Malayalam, Gurumukhi etc, but Gujarati is a language for which hardly any work is traceable especially for handwritten characters. Here in this work a neural network is proposed for Gujarati handwritten digit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014